1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
|
use isa::{self, Instruction};
use binary::{Binary};
#[derive(Debug)]
pub enum MemoryError {
InvalidAddress,
CacheMiss,
}
pub type Result<T> = ::std::result::Result<T, MemoryError>;
pub trait MemoryInterface {
const LATENCY: u32;
fn read_word(&self, address: isa::Address) -> Result<isa::Word>;
fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()>;
// fn read_halfword(&self, address: isa::Address) -> Result<isa::HalfWord>;
// fn write_halfword(&self, address: isa::Address) -> Result<()>;
// fn read_byte(&self, address: isa::Address) -> Result<isa::Byte>;
// fn write_byte(&self, address: isa::Address) -> Result<()>;
}
pub struct Mmu<T: MemoryInterface> {
memory: T,
}
pub struct Memory {
memory: Vec<u32>,
}
#[derive(Clone)]
struct CacheBlock {
valid: bool,
tag: u32,
contents: Vec<u32>,
}
// TODO: probably want different caches for different strategies, and
// investigate how LRU is implemented
// TODO: use hashtable for a way?
// TODO: hashtable-based FA cache?
pub struct Cache {
num_sets: usize,
num_ways: usize,
block_words: usize,
cache: Vec<Vec<CacheBlock>>,
}
impl Memory {
pub fn new(size: isa::Address, binary: Binary) -> Memory {
let mut memory = binary.words.clone();
if size > memory.len() {
let remainder = size - memory.len();
memory.reserve(remainder);
}
Memory {
memory: memory,
}
}
pub fn read_instruction(&self, pc: isa::Address) -> Option<Instruction> {
self.memory.get(pc / 4).map(Clone::clone).map(Instruction::new)
}
}
impl MemoryInterface for Memory {
const LATENCY: u32 = 100;
fn read_word(&self, address: isa::Address) -> Result<isa::Word> {
// memory is word-addressed but addresses are byte-addressed
self.memory.get(address / 4).map(Clone::clone).ok_or(MemoryError::InvalidAddress)
}
fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()> {
let address = address / 4;
if address >= self.memory.len() || address <= 0 {
Err(MemoryError::InvalidAddress)
}
else {
self.memory[address] = value;
Ok(())
}
}
}
impl Cache {
pub fn new(sets: usize, ways: usize, block_words: usize) -> Cache {
Cache {
num_sets: sets,
num_ways: ways,
block_words: block_words,
cache: vec![vec![CacheBlock {
valid: false,
tag: 0,
contents: vec![0; block_words],
}; ways]; sets],
}
}
fn invalidate(&mut self, address: isa::Address) {
}
}
impl MemoryInterface for Cache {
const LATENCY: u32 = 1;
fn read_word(&self, address: isa::Address) -> Result<isa::Word> {
Err(MemoryError::InvalidAddress)
}
fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()> {
Err(MemoryError::InvalidAddress)
}
}
|