aboutsummaryrefslogtreecommitdiff
path: root/src/memory.rs
blob: 371a0a3e73dee85013d5a221e326da898c4b4e22 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
// Copyright 2015 David Li
// This file is part of rustv.

// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with rustv.  If not, see <http://www.gnu.org/licenses/>.

use std::rc::Rc;
use std::cell::RefCell;

use isa::{self, Instruction};
use binary::{Binary};

#[derive(Clone, Debug, PartialEq)]
pub enum MemoryError {
    InvalidAddress,
    CacheMiss {
        stall_cycles: u32,
    },
}

pub type Result<T> = ::std::result::Result<T, MemoryError>;

pub trait MemoryInterface {
    fn latency(&self) -> u32;

    fn step(&mut self);

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word>;
    fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()>;

    fn read_instruction(&mut self, address: isa::Address) -> Option<Instruction> {
        match self.read_word(address / 4) {
            Ok(word) => Some(Instruction::new(word)),
            Err(_) => None,
        }
    }

    // fn read_halfword(&self, address: isa::Address) -> Result<isa::HalfWord>;
    // fn write_halfword(&self, address: isa::Address) -> Result<()>;

    fn read_byte(&mut self, address: isa::Address) -> Result<isa::Byte> {
        let result = self.read_word(address);
        let offset = address % 4;

        match result {
            Ok(word) => match offset {
                0 => Ok((word & 0xFF) as isa::Byte),
                1 => Ok(((word & 0xFF00) >> 8) as isa::Byte),
                2 => Ok(((word & 0xFF0000) >> 16) as isa::Byte),
                3 => Ok(((word & 0xFF000000) >> 24) as isa::Byte),
                _ => panic!(""),
            },
            Err(e) => Err(e),
        }
    }

    fn write_byte(&mut self, address: isa::Address, value: isa::Byte) -> Result<()> {
        let offset = address % 4;

        let result = self.read_word(address);
        let value = value as isa::Word;

        match result {
            Ok(word) => {
                let value = match offset {
                    0 => (word & !(0xFF)) | value,
                    1 => (word & !(0xFF00)) | (value << 8),
                    2 => (word & !(0xFF0000)) | (value << 16),
                    3 => (word & !(0xFF000000)) | (value << 24),
                    _ => panic!(""),
                };
                self.write_word(address, value)
            },
            Err(e) => Err(e),
        }
    }
}

pub type SharedMemory<'a> = Rc<RefCell<Box<MemoryInterface + 'a>>>;

pub trait Mmu {
    fn translate(&self, address: isa::Address) -> isa::Address;
}

pub struct IdentityMmu {}
pub struct ReverseMmu {
    top: isa::Address,
}

impl IdentityMmu {
    pub fn new() -> IdentityMmu {
        IdentityMmu {}
    }
}

impl Mmu for IdentityMmu {
    fn translate(&self, address: isa::Address) -> isa::Address {
        address
    }
}

impl ReverseMmu {
    pub fn new(top: isa::Address) -> ReverseMmu {
        ReverseMmu {
            top: top,
        }
    }
}

impl Mmu for ReverseMmu {
    fn translate(&self, address: isa::Address) -> isa::Address {
        self.top - address
    }
}

pub struct Memory {
    memory: Vec<u32>,
}

#[derive(Clone)]
struct FetchRequest {
    address: isa::Address,
    prefetch: bool, // is this a prefetch
    cycles_left: u32,
    tag: u32,
    data: Vec<u32>, // hold data temporarily while we wait for an entire line
    error: Option<MemoryError>, // in case next level returns an error
    waiting_on: u32, // which word of the block are we waiting on
}

#[derive(Clone)]
struct CacheBlock {
    valid: bool,
    tag: u32,
    contents: Vec<u32>,
    fetch_request: Option<FetchRequest>,
}

// TODO: probably want different caches for different strategies, and
// investigate how LRU is implemented
// TODO: use hashtable for a way?
// TODO: hashtable-based FA cache?
pub struct DirectMappedCache<'a> {
    num_sets: u32,
    block_words: u32,
    cache: Vec<CacheBlock>,
    next_level: SharedMemory<'a>,
}

fn copy_u8_into_u32(src: &[u8], dst: &mut [u32]) {
    for (offset, word) in src.chunks(4).enumerate() {
        let word = if word.len() == 4 {
            (word[0] as u32) |
            ((word[1] as u32) << 8) |
            ((word[2] as u32) << 16) |
            ((word[3] as u32) << 24)
        }
        else if word.len() == 3 {
            (word[0] as u32) |
            ((word[1] as u32) << 8) |
            ((word[2] as u32) << 16)
        }
        else if word.len() == 2 {
            (word[0] as u32) |
            ((word[1] as u32) << 8)
        }
        else {
            word[0] as u32
        };

        dst[offset] = word;
    }
}

impl Memory {
    pub fn new(size: isa::Address) -> Memory {
        Memory {
            memory: vec![0; size as usize],
        }
    }

    pub fn new_from_binary(size: isa::Address, binary: Binary) -> Memory {
        let mut memory = binary.words.clone();
        let size = size as usize;
        if size > memory.len() {
            let remainder = size - memory.len();
            memory.reserve(remainder);
        }
        Memory {
            memory: memory,
        }
    }

    pub fn write_segment(&mut self, data: &[u8], offset: usize) {
        let size = self.memory.len();
        let mut segment = &mut self.memory[(offset / 4)..size];
        copy_u8_into_u32(data, segment);
    }
}

impl MemoryInterface for Memory {
    fn latency(&self) -> u32 {
        100
    }

    fn step(&mut self) {}

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word> {
        // memory is word-addressed but addresses are byte-addressed
        self.memory.get((address / 4) as usize)
            .map(Clone::clone)
            .ok_or(MemoryError::InvalidAddress)
    }

    fn write_word(&mut self, address: isa::Address, value: isa::Word)
                  -> Result<()> {
        let address = (address / 4) as usize;
        if address >= self.memory.len() || address <= 0 {
            Err(MemoryError::InvalidAddress)
        }
        else {
            self.memory[address] = value;
            Ok(())
        }
    }

    fn read_instruction(&mut self, pc: isa::Address) -> Option<Instruction> {
        self.memory.get((pc / 4) as usize)
            .map(Clone::clone)
            .map(Instruction::new)
    }
}

impl<'a> DirectMappedCache<'a> {
    pub fn new(sets: u32, block_words: u32, next_level: SharedMemory<'a>)
               -> DirectMappedCache<'a> {
        let set = CacheBlock {
            valid: false,
            tag: 0,
            contents: vec![0; block_words as usize],
            fetch_request: None,
        };
        DirectMappedCache {
            num_sets: sets,
            block_words: block_words,
            cache: vec![set; sets as usize],
            next_level: next_level,
        }
    }

    pub fn parse_address(&self, address: isa::Address) -> (u32, u32, u32) {
        // TODO: use constant in ISA module for word->byte conversion
        let offset_mask = (self.block_words * 4 - 1) as u32;
        let offset = address & offset_mask;
        let index_mask = (self.num_sets - 1) as u32;
        let index_shift = 32 - (self.block_words * 4).leading_zeros() - 1;
        let index = (address >> index_shift) & index_mask;
        let tag_shift = index_shift + (32 - self.num_sets.leading_zeros()) - 1;
        let tag = address >> tag_shift;

        (tag, index, offset)
    }

    fn normalize_address(&self, address: isa::Address) -> isa::Address {
        let offset_mask = !(self.block_words * 4 - 1);
        address & offset_mask
    }

    pub fn prefetch(&mut self, address: isa::Address) {

    }

    pub fn invalidate(&mut self, address: isa::Address) {

    }
}

impl<'a> MemoryInterface for DirectMappedCache<'a> {
    fn latency(&self) -> u32 {
        0
    }

    fn step(&mut self) {
        for set in self.cache.iter_mut() {
            if let Some(ref mut fetch_request) = set.fetch_request {
                // Start filling the cache once the cycles_left would
                // have hit 0, so that the consumer never gets
                // stall_cycles = 0
                if fetch_request.cycles_left > 1 {
                    fetch_request.cycles_left -= 1;
                    return;
                }
                // read all the words in a line from the next
                // level, until we get a stall

                for offset in fetch_request.waiting_on..self.block_words {
                    let result = self.next_level
                        .borrow_mut()
                        .read_word(fetch_request.address + (4 * offset));
                    match result {
                        Ok(data) => {
                            fetch_request.data[offset as usize] = data;
                            fetch_request.waiting_on += 1;
                        },
                        Err(MemoryError::CacheMiss { stall_cycles }) => {
                            fetch_request.cycles_left = stall_cycles;
                            continue;
                        },
                        Err(MemoryError::InvalidAddress) => {
                            fetch_request.error =
                                Some(MemoryError::InvalidAddress);
                            continue;
                        }
                    }
                }

                // All words fetched, write to cache
                set.tag = fetch_request.tag;
                set.contents = fetch_request.data.clone();
                set.valid = true;
            }

            set.fetch_request = None;
        }
    }

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word> {
        let normalized = self.normalize_address(address);
        let (new_tag, _, _) = self.parse_address(address);
        let stall = self.next_level.borrow().latency();
        let (tag, index, offset) = self.parse_address(address);
        let ref mut set = self.cache[index as usize];

        if set.valid && set.tag == tag {
            return Ok(set.contents[(offset / 4) as usize]);
        }
        else if let None = set.fetch_request {
            set.fetch_request = Some(FetchRequest {
                address: normalized,
                prefetch: false,
                cycles_left: stall,
                tag: new_tag,
                data: vec![0; self.block_words as usize],
                error: None,
                waiting_on: 0,
            });
        }
        else if let Some(ref mut fetch_request) = set.fetch_request {
            if let Some(ref err) = fetch_request.error {
                if fetch_request.address == normalized {
                    return Err(err.clone());
                }
                else {
                    fetch_request.address = normalized;
                    fetch_request.prefetch = false;
                    fetch_request.cycles_left = stall;
                    fetch_request.tag = new_tag;
                    fetch_request.waiting_on = 0;
                }
            }
            // Do the assignment outside the borrow of the error
            fetch_request.error = None;

            return Err(MemoryError::CacheMiss {
                stall_cycles: fetch_request.cycles_left
            });
        }

        Err(MemoryError::CacheMiss {
            stall_cycles: stall,
        })
    }

    fn write_word(&mut self, address: isa::Address, value: isa::Word)
                  -> Result<()> {
        // Write-allocate policy
        match self.read_word(address) {
            Ok(_) => {
                let (tag, index, offset) = self.parse_address(address);
                let ref mut set = self.cache[index as usize];

                if set.valid && set.tag == tag {
                    set.contents[(offset / 4) as usize] = value;
                    // Write-through policy
                    let result = self.next_level.borrow_mut()
                        .write_word(address, value);
                    match result {
                        Ok(()) => Ok(()),
                        Err(e) => Err(e),
                    }
                }
                else {
                    panic!("Could not find supposedly read word");
                }
            },
            Err(e) => Err(e),
        }
    }
}