1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
|
// Copyright 2015 David Li
// This file is part of rustv.
// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with rustv. If not, see <http://www.gnu.org/licenses/>.
use isa::{self, Instruction};
use binary::{Binary};
#[derive(Debug)]
pub enum MemoryError {
InvalidAddress,
CacheMiss {
stall_cycles: u32,
},
}
pub type Result<T> = ::std::result::Result<T, MemoryError>;
pub trait MemoryInterface {
fn latency() -> u32;
fn read_word(&self, address: isa::Address) -> Result<isa::Word>;
fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()>;
// fn read_halfword(&self, address: isa::Address) -> Result<isa::HalfWord>;
// fn write_halfword(&self, address: isa::Address) -> Result<()>;
// fn read_byte(&self, address: isa::Address) -> Result<isa::Byte>;
// fn write_byte(&self, address: isa::Address) -> Result<()>;
}
pub struct Mmu<T: MemoryInterface> {
memory: T,
}
pub struct Memory {
memory: Vec<u32>,
}
#[derive(Clone)]
struct FetchRequest {
address: isa::Address,
prefetch: bool,
cycles_left: u32,
}
#[derive(Clone)]
struct CacheBlock {
valid: bool,
tag: u32,
contents: Vec<u32>,
fetch_request: Option<FetchRequest>,
}
type CacheSet = Vec<CacheBlock>;
// TODO: probably want different caches for different strategies, and
// investigate how LRU is implemented
// TODO: use hashtable for a way?
// TODO: hashtable-based FA cache?
pub struct Cache<T: MemoryInterface> {
num_sets: u32,
num_ways: u32,
block_words: u32,
cache: Vec<CacheSet>,
next_level: T,
}
impl Memory {
pub fn new(size: isa::Address, binary: Binary) -> Memory {
let mut memory = binary.words.clone();
let size = size as usize;
if size > memory.len() {
let remainder = size - memory.len();
memory.reserve(remainder);
}
Memory {
memory: memory,
}
}
pub fn read_instruction(&self, pc: isa::Address) -> Option<Instruction> {
self.memory.get((pc / 4) as usize)
.map(Clone::clone)
.map(Instruction::new)
}
}
impl MemoryInterface for Memory {
fn latency() -> u32 {
100
}
fn read_word(&self, address: isa::Address) -> Result<isa::Word> {
// memory is word-addressed but addresses are byte-addressed
self.memory.get((address / 4) as usize)
.map(Clone::clone)
.ok_or(MemoryError::InvalidAddress)
}
fn write_word(&mut self, address: isa::Address, value: isa::Word)
-> Result<()> {
let address = (address / 4) as usize;
if address >= self.memory.len() || address <= 0 {
Err(MemoryError::InvalidAddress)
}
else {
self.memory[address] = value;
Ok(())
}
}
}
impl<T: MemoryInterface> Cache<T> {
pub fn new(sets: u32, ways: u32, block_words: u32, next_level: T) -> Cache<T> {
let set = vec![CacheBlock {
valid: false,
tag: 0,
contents: vec![0; block_words as usize],
fetch_request: None,
}; ways as usize];
Cache {
num_sets: sets,
num_ways: ways,
block_words: block_words,
cache: vec![set; sets as usize],
next_level: next_level,
}
}
pub fn parse_address(&self, address: isa::Address) -> (u32, u32, u32) {
// TODO: use constant in ISA module for word->byte conversion
let offset_mask = (self.block_words * 4 - 1) as u32;
let offset = address & offset_mask;
let index_mask = (self.num_sets - 1) as u32;
let index_shift = 32 - (self.block_words * 4).leading_zeros() - 1;
let index = (address >> index_shift) & index_mask;
let tag_shift = index_shift + (32 - self.num_sets.leading_zeros()) - 1;
let tag = address >> tag_shift;
(tag, index, offset)
}
pub fn prefetch(&mut self, address: isa::Address) {
}
pub fn invalidate(&mut self, address: isa::Address) {
}
}
impl<T: MemoryInterface> MemoryInterface for Cache<T> {
fn latency() -> u32 {
100
}
fn read_word(&self, address: isa::Address) -> Result<isa::Word> {
let (tag, index, offset) = self.parse_address(address);
let ref set = self.cache[index as usize];
for way in set {
if way.tag == tag {
return Ok(way.contents[(offset / 4) as usize]);
}
}
Err(MemoryError::CacheMiss {
stall_cycles: Cache::<T>::latency() + T::latency()
})
}
fn write_word(&mut self, address: isa::Address, value: isa::Word)
-> Result<()> {
// XXX: temporary
self.next_level.write_word(address, value)
}
}
|