aboutsummaryrefslogtreecommitdiff
path: root/src/memory.rs
blob: 5a30e17f0b9501aeaecb59ad3e632f76a12cd0aa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
// Copyright 2015 David Li
// This file is part of rustv.

// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with rustv.  If not, see <http://www.gnu.org/licenses/>.

use std::rc::Rc;
use std::cell::RefCell;

use isa::{self, Instruction};
use binary::{Binary};

#[derive(Clone, Debug)]
pub enum MemoryError {
    InvalidAddress,
    CacheMiss {
        stall_cycles: u32,
    },
}

pub type Result<T> = ::std::result::Result<T, MemoryError>;

pub trait MemoryInterface {
    fn latency(&self) -> u32;

    fn step(&mut self);

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word>;
    fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()>;

    fn read_instruction(&mut self, address: isa::Address) -> Option<Instruction> {
        match self.read_word(address / 4) {
            Ok(word) => Some(Instruction::new(word)),
            Err(_) => None,
        }
    }

    // fn read_halfword(&self, address: isa::Address) -> Result<isa::HalfWord>;
    // fn write_halfword(&self, address: isa::Address) -> Result<()>;

    // fn read_byte(&self, address: isa::Address) -> Result<isa::Byte>;
    // fn write_byte(&self, address: isa::Address) -> Result<()>;
}

pub type SharedMemory = Rc<RefCell<MemoryInterface>>;

// TODO: should be a trait
pub struct Mmu<T: MemoryInterface> {
    memory: T,
}

pub struct Memory {
    memory: Vec<u32>,
}

#[derive(Clone)]
struct FetchRequest {
    address: isa::Address,
    prefetch: bool, // is this a prefetch
    cycles_left: u32,
    tag: u32,
    data: Vec<u32>, // hold data temporarily while we wait for an entire line
    error: Option<MemoryError>, // in case next level returns an error
    waiting_on: u32, // which word of the block are we waiting on
}

#[derive(Clone)]
struct CacheBlock {
    valid: bool,
    tag: u32,
    contents: Vec<u32>,
    fetch_request: Option<FetchRequest>,
}

// TODO: probably want different caches for different strategies, and
// investigate how LRU is implemented
// TODO: use hashtable for a way?
// TODO: hashtable-based FA cache?
pub struct DirectMappedCache {
    num_sets: u32,
    block_words: u32,
    cache: Vec<CacheBlock>,
    next_level: SharedMemory,
}

impl Memory {
    pub fn new(size: isa::Address) -> Memory {
        Memory {
            memory: vec![0; size as usize],
        }
    }

    pub fn new_from_binary(size: isa::Address, binary: Binary) -> Memory {
        let mut memory = binary.words.clone();
        let size = size as usize;
        if size > memory.len() {
            let remainder = size - memory.len();
            memory.reserve(remainder);
        }
        Memory {
            memory: memory,
        }
    }
}

impl MemoryInterface for Memory {
    fn latency(&self) -> u32 {
        100
    }

    fn step(&mut self) {}

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word> {
        // memory is word-addressed but addresses are byte-addressed
        self.memory.get((address / 4) as usize)
            .map(Clone::clone)
            .ok_or(MemoryError::InvalidAddress)
    }

    fn write_word(&mut self, address: isa::Address, value: isa::Word)
                  -> Result<()> {
        let address = (address / 4) as usize;
        if address >= self.memory.len() || address <= 0 {
            Err(MemoryError::InvalidAddress)
        }
        else {
            self.memory[address] = value;
            Ok(())
        }
    }

    fn read_instruction(&mut self, pc: isa::Address) -> Option<Instruction> {
        self.memory.get((pc / 4) as usize)
            .map(Clone::clone)
            .map(Instruction::new)
    }
}

impl DirectMappedCache {
    pub fn new(sets: u32, block_words: u32, next_level: SharedMemory)
               -> DirectMappedCache {
        let set = CacheBlock {
            valid: false,
            tag: 0,
            contents: vec![0; block_words as usize],
            fetch_request: None,
        };
        DirectMappedCache {
            num_sets: sets,
            block_words: block_words,
            cache: vec![set; sets as usize],
            next_level: next_level,
        }
    }

    pub fn parse_address(&self, address: isa::Address) -> (u32, u32, u32) {
        // TODO: use constant in ISA module for word->byte conversion
        let offset_mask = (self.block_words * 4 - 1) as u32;
        let offset = address & offset_mask;
        let index_mask = (self.num_sets - 1) as u32;
        let index_shift = 32 - (self.block_words * 4).leading_zeros() - 1;
        let index = (address >> index_shift) & index_mask;
        let tag_shift = index_shift + (32 - self.num_sets.leading_zeros()) - 1;
        let tag = address >> tag_shift;

        (tag, index, offset)
    }

    fn normalize_address(&self, address: isa::Address) -> isa::Address {
        let offset_mask = !(self.block_words * 4 - 1);
        address & offset_mask
    }

    pub fn prefetch(&mut self, address: isa::Address) {

    }

    pub fn invalidate(&mut self, address: isa::Address) {

    }
}

impl MemoryInterface for DirectMappedCache {
    fn latency(&self) -> u32 {
        100
    }

    fn step(&mut self) {
        for set in self.cache.iter_mut() {
            if let Some(ref mut fetch_request) = set.fetch_request {
                if fetch_request.cycles_left > 0 {
                    fetch_request.cycles_left -= 1;
                    continue;
                }
                else {
                    // read all the words in a line from the next
                    // level, until we get a stall

                    for offset in fetch_request.waiting_on..self.block_words {
                        let result = self.next_level
                            .borrow_mut()
                            .read_word(fetch_request.address + (4 * offset));
                        match result {
                            Ok(data) => {
                                fetch_request.data[offset as usize] = data;
                                fetch_request.waiting_on += 1;
                            },
                            Err(MemoryError::CacheMiss { stall_cycles }) => {
                                fetch_request.cycles_left = stall_cycles;
                                continue;
                            },
                            Err(MemoryError::InvalidAddress) => {
                                fetch_request.error =
                                    Some(MemoryError::InvalidAddress);
                                continue;
                            }
                        }
                    }

                    // All words fetched, write to cache
                    set.tag = fetch_request.tag;
                    set.contents = fetch_request.data.clone();
                    set.valid = true;
                }
            }

            set.fetch_request = None;
        }
    }

    fn read_word(&mut self, address: isa::Address) -> Result<isa::Word> {
        let normalized = self.normalize_address(address);
        let (new_tag, _, _) = self.parse_address(address);
        let stall = self.latency();
        let (tag, index, offset) = self.parse_address(address);
        let ref mut set = self.cache[index as usize];

        if set.valid && set.tag == tag {
            return Ok(set.contents[(offset / 4) as usize]);
        }
        else if let None = set.fetch_request {
            set.fetch_request = Some(FetchRequest {
                address: normalized,
                prefetch: false,
                cycles_left: stall,
                tag: new_tag,
                data: vec![0, self.block_words],
                error: None,
                waiting_on: 0,
            });
        }
        else if let Some(ref mut fetch_request) = set.fetch_request {
            if let Some(ref err) = fetch_request.error {
                if fetch_request.address == normalized {
                    return Err(err.clone());
                }
                else {
                    fetch_request.address = normalized;
                    fetch_request.prefetch = false;
                    fetch_request.cycles_left = stall;
                    fetch_request.tag = new_tag;
                    fetch_request.waiting_on = 0;
                }
            }
            // Do the assignment outside the borrow of the error
            fetch_request.error = None;

            return Err(MemoryError::CacheMiss {
                stall_cycles: fetch_request.cycles_left
            });
        }

        Err(MemoryError::CacheMiss {
            stall_cycles: stall,
        })
    }

    fn write_word(&mut self, address: isa::Address, value: isa::Word)
                  -> Result<()> {
        // XXX: temporary
        self.next_level.borrow_mut().write_word(address, value)
    }
}