1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
// Copyright 2015-2016 David Li
// This file is part of rustv.
// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with rustv. If not, see <http://www.gnu.org/licenses/>.
#![feature(braced_empty_structs, step_by)]
extern crate elfloader32 as elfloader_lib;
pub mod isa;
pub mod binary;
pub mod memory;
pub mod simulator;
pub use elfloader_lib as elfloader;
#[test]
fn test_elfloader() {
use std::io::prelude::*;
use std::fs::File;
use std::rc::Rc;
use std::cell::RefCell;
use memory::{Mmu, MemoryInterface};
let mut f = File::open("../riscv/kernel").unwrap();
let mut buffer = Vec::new();
f.read_to_end(&mut buffer).unwrap();
let elf = elfloader::ElfBinary::new("test", &buffer).unwrap();
let start = elf.file_header().entry as isa::Address;
let mut text = None;
let mut data = None;
for p in elf.section_headers() {
if p.name.0 == 0x1b {
text = Some((elf.section_data(p), p.addr));
}
else if p.name.0 == 0x33 {
data = Some((elf.section_data(p), p.addr));
}
}
let (text, text_offset) = text.unwrap();
let (data, data_offset) = data.unwrap();
let mmu = memory::IdentityMmu::new();
let mmu2 = memory::ReverseMmu::new(0x8000);
let mut memory = memory::Memory::new(0x10000);
memory.write_segment(&mmu, text, text_offset as usize);
memory.write_segment(&mmu, data, data_offset as usize);
memory.write_segment(&mmu2, text, text_offset as usize);
memory.write_segment(&mmu2, data, data_offset as usize);
let memory_ref = Rc::new(RefCell::new(memory));
let cache = memory::DirectMappedCache::new(4, 4, memory_ref.clone());
let cache_ref = Rc::new(RefCell::new(cache));
let core = simulator::Core::new(
start, 0x1000,
cache_ref.clone(), Box::new(mmu));
let core2 = simulator::Core::new(
start, 0x3000,
cache_ref.clone(), Box::new(mmu2));
let cores = vec![core, core2];
let mut simulator = simulator::Simulator::new(cores, memory_ref.clone());
simulator.run();
}
#[cfg(test)]
mod tests {
#[test]
fn cache_address_parsing() {
use memory::*;
use std::rc::Rc;
use std::cell::RefCell;
let memory = Memory::new(16);
let memory_ref = Rc::new(RefCell::new(memory));
let dm_cache_word = DirectMappedCache::new(4, 1, memory_ref.clone());
let dm_cache_doubleword = DirectMappedCache::new(4, 2, memory_ref.clone());
assert_eq!(dm_cache_word.parse_address(0xFFFFFFFD),
(0xFFFFFFF, 3, 1));
assert_eq!(dm_cache_doubleword.parse_address(0xFFFFFFFD),
(0x7FFFFFF, 3, 5));
}
#[test]
fn memory_rw() {
use std::rc::Rc;
use std::cell::RefCell;
use memory::*;
let size = 0xFF;
let mut memory = Memory::new(size);
assert_eq!(memory.write_word(0, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(0, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(1, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(2, 0xF0),
Err(MemoryError::InvalidAddress));
for address in (4..size).step_by(4) {
assert_eq!(memory.write_word(address, 0xF0), Ok(()));
assert_eq!(memory.read_word(address), Ok(0xF0));
}
assert_eq!(memory.write_word(0x10, 0x01234567), Ok(()));
assert_eq!(memory.write_word(0x14, 0xDEADBEEF), Ok(()));
assert_eq!(memory.read_byte(0x10), Ok(0x67));
assert_eq!(memory.read_byte(0x11), Ok(0x45));
assert_eq!(memory.read_byte(0x12), Ok(0x23));
assert_eq!(memory.read_byte(0x13), Ok(0x01));
let stall = Err(MemoryError::CacheMiss {
stall_cycles: memory.latency(),
});
let write_stall = Err(MemoryError::CacheMiss {
stall_cycles: memory.latency(),
});
let memory_ref = Rc::new(RefCell::new(memory));
let mut dm_cache = DirectMappedCache::new(4, 4, memory_ref.clone());
assert_eq!(dm_cache.read_word(0x10), stall);
for _ in 0..100 {
dm_cache.step();
}
assert_eq!(dm_cache.write_word(0x20, 0x123), write_stall);
assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567));
assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF));
assert_eq!(dm_cache.read_word(0x18), Ok(0xF0));
assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0));
assert_eq!(dm_cache.read_byte(0x10), Ok(0x67));
assert_eq!(dm_cache.read_byte(0x11), Ok(0x45));
assert_eq!(dm_cache.read_byte(0x12), Ok(0x23));
assert_eq!(dm_cache.read_byte(0x13), Ok(0x01));
assert_eq!(dm_cache.write_word(0x18, 0xBEEFBEEF), Ok(()));
assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF));
assert_eq!(memory_ref.borrow_mut().read_word(0x18), Ok(0xBEEFBEEF));
for _ in 0..100 {
dm_cache.step();
}
assert_eq!(dm_cache.write_word(0x20, 0x123), Ok(()));
assert_eq!(memory_ref.borrow_mut().read_word(0x20), Ok(0x123));
// Should not have been evicted
assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567));
assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF));
assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF));
assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0));
}
}
|