// Copyright 2015-2016 David Li // This file is part of rustv. // rustv is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // rustv is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with rustv. If not, see . use isa; use memory::{MemoryInterface, MemoryError, Mmu, SharedMemory}; struct RegisterFile { registers: [isa::Word; 32], } pub struct Core<'a>{ pc: isa::Address, registers: RegisterFile, stall: u32, running: bool, cache: SharedMemory<'a>, mmu: Box, cycle_count: u32, stall_count: u32, } pub struct Simulator<'a> { cores: Vec>, memory: SharedMemory<'a>, } #[derive(Debug)] enum Trap { IllegalInstruction { address: isa::Address, instruction: isa::Instruction, }, IllegalRead { address: isa::Address, instruction: isa::Instruction, memory_address: isa::Address, }, IllegalWrite { address: isa::Address, instruction: isa::Instruction, memory_address: isa::Address, memory_value: isa::Word, } } impl RegisterFile { fn new() -> RegisterFile { RegisterFile { registers: [0; 32], } } fn write_word>(&mut self, reg: T, value: isa::Word) { // TODO: should be safe to use unchecked index let reg = reg.into(); if reg == isa::Register::X0 { return; } self.registers[reg.as_num()] = value; } fn read_word>(&mut self, reg: T) -> isa::Word { self.registers[reg.into().as_num()] } } impl<'a> Core<'a> { // TODO: take Rc> to Memory as well? pub fn new(entry: isa::Address, sp: isa::Address, cache: SharedMemory<'a>, mmu: Box) -> Core<'a> { let mut registers = RegisterFile::new(); registers.write_word(isa::Register::X2, sp); Core { pc: entry, registers: registers, stall: 0, running: true, cache: cache, mmu: mmu, cycle_count: 0, stall_count: 0, } } fn step(&mut self, inst: isa::Instruction) { let pc = self.pc; self.cycle_count += 1; if self.stall > 0 { self.stall -= 1; self.stall_count += 1; return; } match inst.opcode() { isa::opcodes::LUI => { self.registers.write_word(inst.rd(), inst.u_imm() as isa::Word) }, isa::opcodes::AUIPC => { let result = (pc as isa::SignedWord) + inst.u_imm(); self.registers.write_word(inst.rd(), result as isa::Word); }, isa::opcodes::JALR => { // TODO: assert funct3 is 0 let base = self.registers.read_word(inst.rs1()) as isa::SignedWord; let target = (base + inst.i_imm()) as isa::Address; let retval = (pc + 4) as isa::Word; if target == 0x0 { // ret self.running = false; } else { self.registers.write_word(inst.rd(), retval); self.pc = target; return; } }, isa::opcodes::JAL => { let target = ((pc as isa::SignedWord) + inst.uj_imm()) as isa::Address; self.registers.write_word(inst.rd(), (pc + 4) as isa::Word); self.pc = target; // panic!("JAL to {:X} 0x{:X}", pc, target); return; } isa::opcodes::BRANCH => { let target = ((pc as isa::SignedWord) + inst.sb_imm()) as isa::Address; let rs1 = self.registers.read_word(inst.rs1()); let rs2 = self.registers.read_word(inst.rs2()); if match inst.funct3() { isa::funct3::BEQ => rs1 == rs2, isa::funct3::BNE => rs1 != rs2, isa::funct3::BLT => (rs1 as isa::SignedWord) < (rs2 as isa::SignedWord), isa::funct3::BGE => (rs1 as isa::SignedWord) > (rs2 as isa::SignedWord), isa::funct3::BLTU => rs1 < rs2, isa::funct3::BGEU => rs1 > rs2, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); false } } { self.pc = target; return; } }, isa::opcodes::INTEGER_IMMEDIATE => { let imm = inst.i_imm(); let src = self.registers.read_word(inst.rs1()) as isa::SignedWord; if let Some(value) = match inst.funct3() { isa::funct3::ADDI => { Some(src.wrapping_add(imm) as isa::Word) }, isa::funct3::SLLI => { Some((src << inst.shamt()) as isa::Word) }, isa::funct3::SLTI => { if src < imm { Some(1) } else { Some(0) } }, isa::funct3::SLTIU => { if (src as isa::Word) < (imm as isa::Word) { Some(1) } else { Some(0) } }, isa::funct3::XORI => { Some((src ^ imm) as isa::Word) }, isa::funct3::SRLI_SRAI => { match inst.funct7() { isa::funct7::SRLI => Some(((src as isa::Word) >> inst.shamt()) as isa::Word), isa::funct7::SRAI => Some((src >> inst.shamt()) as isa::Word), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::ORI => { Some((src | imm) as isa::Word) }, isa::funct3::ANDI => { Some((src & imm) as isa::Word) }, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } { self.registers.write_word(inst.rd(), value); } }, isa::opcodes::INTEGER_REGISTER => { let src1 = self.registers.read_word(inst.rs1()); let src2 = self.registers.read_word(inst.rs2()); let src2_shift = src2 & 0x1F; if let Some(value) = match inst.funct3() { isa::funct3::ADD_SUB => { match inst.funct7() { isa::funct7::ADD_SRL => Some(((src1 as isa::SignedWord).wrapping_add(src2 as isa::SignedWord)) as isa::Word), isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord).wrapping_sub(src2 as isa::SignedWord)) as isa::Word), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::SLL => { Some(src1 << src2_shift) }, isa::funct3::SLT => { if (src1 as isa::SignedWord) < (src2 as isa::SignedWord) { Some(1) } else { Some(0) } }, isa::funct3::SLTU => { if src1 < src2 { Some(1) } else { Some(0) } }, isa::funct3::XOR => { Some(src1 ^ src2) }, isa::funct3::SRL_SRA => { match inst.funct7() { isa::funct7::ADD_SRL => Some(src1 >> src2_shift), isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord) >> src2_shift) as isa::Word), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::OR => { Some(src1 | src2) }, isa::funct3::AND => { Some(src1 & src2) }, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } { self.registers.write_word(inst.rd(), value); } }, isa::opcodes::LOAD => { let imm = inst.i_imm(); let base = self.registers.read_word(inst.rs1()); let address = ((base as isa::SignedWord) + imm) as isa::Address; let address = self.mmu.translate(address); let result = match inst.funct3() { isa::funct3::LB => self.cache.borrow_mut() .read_byte(address) .map(|b| (b as isa::SignedByte) as isa::Word), isa::funct3::LH => panic!("{:x}: Unimplemented LH"), isa::funct3::LW => self.cache.borrow_mut().read_word(address), isa::funct3::LBU => self.cache.borrow_mut() .read_byte(address) .map(|b| b as isa::Word), isa::funct3::LHU => panic!("{:x}: Unimplemented LHU"), _ => panic!("{:x}: Invalid load funct3code: 0x{:x}", pc, inst.funct3()), }; match result { Ok(value) => self.registers.write_word(inst.rd(), value), Err(MemoryError::CacheMiss { stall_cycles }) => { self.stall = stall_cycles; return; // don't increment PC }, Err(MemoryError::InvalidAddress) => { self.trap(Trap::IllegalRead { address: pc, instruction: inst, memory_address: address, }); }, } }, isa::opcodes::STORE => { let imm = inst.s_imm(); let base = self.registers.read_word(inst.rs1()); let val = self.registers.read_word(inst.rs2()); let address = ((base as isa::SignedWord) + imm) as isa::Address; let address = self.mmu.translate(address); let result = match inst.funct3() { isa::funct3::SB => self.cache.borrow_mut().write_byte(address, val as u8), isa::funct3::SH => panic!("PC {:x}: Unimplemented SH"), isa::funct3::SW => self.cache.borrow_mut().write_word(address, val), _ => panic!("PC {:x}: Invalid store funct3code: 0x{:x}", pc, inst.funct3()), }; match result { Ok(()) => (), Err(MemoryError::CacheMiss { stall_cycles }) => { self.stall = stall_cycles; return; // don't increment PC }, Err(MemoryError::InvalidAddress) => { self.trap(Trap::IllegalWrite { address: pc, instruction: inst, memory_address: address, memory_value: val, }) } } }, isa::opcodes::SYSTEM => match inst.i_imm() { 0x0 => { // System call println!("System call {}:", self.registers.read_word(isa::Register::X10)); } _ => { } }, _ => { panic!("Invalid opcode: 0x{:02X} at PC 0x{:X}", inst.opcode(), pc); } } self.pc += 4; } fn trap(&mut self, trap: Trap) { println!("Trap: {:?}", trap); self.running = false; } } impl<'a> Simulator<'a> { pub fn new(cores: Vec>, memory: SharedMemory<'a>) -> Simulator<'a> { // TODO: initialize GP, registers (GP is in headers) Simulator { cores: cores, memory: memory, } } fn step(&mut self) -> bool { let mut ran = false; for core in self.cores.iter_mut() { if !core.running { continue; } let pc = core.pc; let pc = core.mmu.translate(pc); let inst = self.memory.borrow_mut().read_instruction(pc); if let Some(inst) = inst { core.step(inst); } else { // TODO: trap } core.cache.borrow_mut().step(); ran = true; } if !ran { println!("All cores are not running, stopping..."); for (i, core) in self.cores.iter().enumerate() { println!("Core {}: stalled {} of {}", i, core.stall_count, core.cycle_count); } } ran } pub fn run(&mut self) { loop { if !self.step() { break } } } pub fn run_max(&mut self, cycles: usize) { for _ in 0..cycles { if !self.step() { break } } } }