// Copyright 2015-2016 David Li // This file is part of rustv. // rustv is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // rustv is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with rustv. If not, see . use isa; use isa::IsaType; use memory::{MemoryInterface, MemoryError, Mmu, SharedMemory}; use register_file::RegisterFile; use syscall::SyscallHandler; use trap::Trap; pub struct Core<'a> { id: usize, pc: isa::Address, registers: RegisterFile, stall: u32, running: bool, cache: SharedMemory<'a>, mmu: Box, cycle_count: u32, stall_count: u32, } /// Why the simulator has halted execution. pub enum HaltReason { /// All cores have halted execution. CoresHalted, /// The simulator has hit the cycle limit. OutOfCycles, /// The syscall handler has requested a halt. SystemHalt, } pub struct Simulator<'a, T: SyscallHandler> { cores: Vec>, memory: SharedMemory<'a>, caches: Vec>, syscall: T, } impl<'a> Core<'a> { // TODO: take Rc> to Memory as well? pub fn new(id: usize, entry: isa::Address, sp: isa::Address, cache: SharedMemory<'a>, mmu: Box) -> Core<'a> { let mut registers = RegisterFile::new(); registers.write_word(isa::Register::X2, sp); Core { id: id, pc: entry, registers: registers, stall: 0, running: true, cache: cache, mmu: mmu, cycle_count: 0, stall_count: 0, } } pub fn registers(&mut self) -> &mut RegisterFile { &mut self.registers } fn step(&mut self, inst: isa::Instruction, system: &mut SyscallHandler) { let pc = self.pc; self.cycle_count += 1; if self.stall > 0 { self.stall -= 1; self.stall_count += 1; return; } match inst.opcode() { isa::opcodes::LUI => { self.registers.write_word(inst.rd(), inst.u_imm().as_word()) }, isa::opcodes::AUIPC => { let result = (pc.as_signed_word()) + inst.u_imm(); self.registers.write_word(inst.rd(), result.as_word()); }, isa::opcodes::JALR => { // TODO: assert funct3 is 0 let base = self.registers.read_word(inst.rs1()) .as_signed_word(); let target = (base + inst.i_imm()).as_address(); let retval = (pc + 4).as_word(); if target == isa::Word(0x0) { // ret self.running = false; } else { self.registers.write_word(inst.rd(), retval); self.pc = target; return; } }, isa::opcodes::JAL => { let target = ((pc.as_signed_word()) + inst.uj_imm()).as_address(); self.registers.write_word(inst.rd(), (pc + 4).as_word()); self.pc = target; // panic!("JAL to {:X} 0x{:X}", pc, target); return; } isa::opcodes::BRANCH => { let target = ((pc.as_signed_word()) + inst.sb_imm()).as_address(); let rs1 = self.registers.read_word(inst.rs1()); let rs2 = self.registers.read_word(inst.rs2()); if match inst.funct3() { isa::funct3::BEQ => rs1 == rs2, isa::funct3::BNE => rs1 != rs2, isa::funct3::BLT => (rs1.as_signed_word()) < (rs2.as_signed_word()), isa::funct3::BGE => (rs1.as_signed_word()) >= (rs2.as_signed_word()), isa::funct3::BLTU => rs1 < rs2, isa::funct3::BGEU => rs1 >= rs2, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); false } } { self.pc = target; return; } }, isa::opcodes::INTEGER_IMMEDIATE => { let imm = inst.i_imm(); let src = self.registers.read_word(inst.rs1()).as_signed_word(); if let Some(value) = match inst.funct3() { isa::funct3::ADDI => { Some(src.wrapping_add(imm).as_word()) }, isa::funct3::SLLI => { Some((src.as_word() << inst.shamt())) }, isa::funct3::SLTI => { if src < imm { Some(isa::Word(1)) } else { Some(isa::Word(0)) } }, isa::funct3::SLTIU => { if (src.as_word()) < (imm.as_word()) { Some(isa::Word(1)) } else { Some(isa::Word(0)) } }, isa::funct3::XORI => { Some((src ^ imm).as_word()) }, isa::funct3::SRLI_SRAI => { match inst.funct7() { isa::funct7::SRLI => Some(((src.as_word()) >> inst.shamt()).as_word()), isa::funct7::SRAI => Some((src >> inst.shamt() as i32).as_word()), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::ORI => { Some((src | imm).as_word()) }, isa::funct3::ANDI => { Some((src & imm).as_word()) }, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } { self.registers.write_word(inst.rd(), value); } }, isa::opcodes::INTEGER_REGISTER => { let src1 = self.registers.read_word(inst.rs1()); let src2 = self.registers.read_word(inst.rs2()); let src2_shift = src2 & 0x1F; if let Some(value) = match inst.funct3() { isa::funct3::ADD_SUB => { match inst.funct7() { isa::funct7::ADD_SRL => Some(((src1.as_signed_word()).wrapping_add(src2.as_signed_word())).as_word()), isa::funct7::SUB_SRA => Some(((src1.as_signed_word()).wrapping_sub(src2.as_signed_word())).as_word()), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::SLL => { Some(src1 << src2_shift) }, isa::funct3::SLT => { if (src1.as_signed_word()) < (src2.as_signed_word()) { Some(isa::Word(1)) } else { Some(isa::Word(0)) } }, isa::funct3::SLTU => { if src1 < src2 { Some(isa::Word(1)) } else { Some(isa::Word(0)) } }, isa::funct3::XOR => { Some(src1 ^ src2) }, isa::funct3::SRL_SRA => { match inst.funct7() { isa::funct7::ADD_SRL => Some(src1 >> src2_shift), isa::funct7::SUB_SRA => Some(((src1.as_signed_word()) >> src2_shift.as_signed_word()).as_word()), _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } }, isa::funct3::OR => { Some(src1 | src2) }, isa::funct3::AND => { Some(src1 & src2) }, _ => { self.trap(Trap::IllegalInstruction { address: pc, instruction: inst, }); None } } { self.registers.write_word(inst.rd(), value); } }, isa::opcodes::LOAD => { let imm = inst.i_imm(); let base = self.registers.read_word(inst.rs1()); let address = ((base.as_signed_word()) + imm).as_address(); let address = self.mmu.translate(address); let result = match inst.funct3() { isa::funct3::LB => self.cache.borrow_mut() .read_byte(address) .map(|b| b.as_signed_word().as_word()), isa::funct3::LH => self.cache.borrow_mut() .read_halfword(address) .map(|b| b.as_signed_word().as_word()), isa::funct3::LW => self.cache.borrow_mut().read_word(address), isa::funct3::LBU => self.cache.borrow_mut() .read_byte(address) .map(|b| b.as_word()), isa::funct3::LHU => self.cache.borrow_mut() .read_halfword(address) .map(|b| b.as_word()), _ => panic!("{:x}: Invalid load funct3code: 0x{:x}", pc, inst.funct3()), }; match result { Ok(value) => self.registers.write_word(inst.rd(), value), Err(MemoryError::CacheMiss { stall_cycles, retry }) => { self.stall = stall_cycles - 1; if retry { return; // don't increment PC } }, Err(MemoryError::InvalidAddress) => { self.trap(Trap::IllegalRead { address: pc, instruction: inst, memory_address: address, }); }, } }, isa::opcodes::STORE => { let imm = inst.s_imm(); let base = self.registers.read_word(inst.rs1()); let val = self.registers.read_word(inst.rs2()); let address = ((base.as_signed_word()) + imm).as_address(); let address = self.mmu.translate(address); let result = match inst.funct3() { isa::funct3::SB => self.cache.borrow_mut() .write_byte(address, val.as_byte()), isa::funct3::SH => self.cache.borrow_mut() .write_halfword(address, val.as_half_word()), isa::funct3::SW => self.cache.borrow_mut().write_word(address, val), _ => panic!("PC {:x}: Invalid store funct3code: 0x{:x}", pc, inst.funct3()), }; match result { Ok(()) => (), Err(MemoryError::CacheMiss { stall_cycles, retry }) => { self.stall = stall_cycles - 1; if retry { return; // don't increment PC } }, Err(MemoryError::InvalidAddress) => { self.trap(Trap::IllegalWrite { address: pc, instruction: inst, memory_address: address, memory_value: val, }) } } }, isa::opcodes::SYSTEM => match inst.i_imm() { isa::SignedWord(0x0) => { let result = system.syscall(self.id, &mut self.registers, &*self.mmu); if let Some(trap) = result { self.trap(trap); } } _ => { } }, _ => { panic!("Invalid opcode: 0x{:02X} at PC 0x{:X} in instruction {:?}", inst.opcode(), pc, inst); } } self.pc += 4; } fn trap(&mut self, trap: Trap) { println!("Trap: {:?}", trap); self.running = false; } } impl<'a, T: SyscallHandler> Simulator<'a, T> { pub fn new(cores: Vec>, memory: SharedMemory<'a>, caches: Vec>, syscall: T) -> Simulator<'a, T> { // TODO: initialize GP, registers (GP is in headers) Simulator { cores: cores, memory: memory, caches: caches, syscall: syscall, } } fn step(&mut self) -> bool { let mut ran = false; for core in self.cores.iter_mut() { if !core.running { continue; } let pc = core.pc; let pc = core.mmu.translate(pc); let inst = self.memory.borrow_mut().read_instruction(pc); if let Some(inst) = inst { core.step(inst, &mut self.syscall); } else { // TODO: trap } ran = true; } for cache in self.caches.iter() { cache.borrow_mut().step(); } ran } pub fn report(&self) -> Vec<(usize, u32, u32)> { self.cores.iter() .map(|core| (core.id, core.stall_count, core.cycle_count)) .collect() } pub fn run(&mut self) -> HaltReason { loop { if !self.step() { return HaltReason::CoresHalted; } if self.syscall.should_halt() { return HaltReason::SystemHalt; } } } pub fn run_max(&mut self, cycles: usize) -> HaltReason { for _ in 0..cycles { if !self.step() { return HaltReason::CoresHalted; } if self.syscall.should_halt() { return HaltReason::SystemHalt; } } return HaltReason::OutOfCycles; } }