// Copyright 2015 David Li
// This file is part of rustv.
// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with rustv. If not, see .
use isa;
use binary::{Binary};
use memory::{MemoryInterface, Memory, MemoryError};
pub struct Simulator {
num_cores: usize,
memory: Memory,
}
#[derive(Clone)]
struct RegisterFile {
registers: [isa::Word; 32],
}
#[derive(Clone)]
struct Core {
pc: isa::Address,
registers: RegisterFile,
running: bool,
}
#[derive(Debug)]
enum Trap {
IllegalInstruction {
address: isa::Address,
instruction: isa::Instruction,
},
IllegalRead {
address: isa::Address,
instruction: isa::Instruction,
memory_address: isa::Address,
},
IllegalWrite {
address: isa::Address,
instruction: isa::Instruction,
memory_address: isa::Address,
memory_value: isa::Word,
}
}
impl RegisterFile {
fn new() -> RegisterFile {
RegisterFile {
registers: [0; 32],
}
}
fn write_word>(&mut self, reg: T, value: isa::Word) {
// TODO: should be safe to use unchecked index
let reg = reg.into();
if reg == isa::Register::X0 { return; }
self.registers[reg.as_num()] = value;
}
fn read_word>(&mut self, reg: T) -> isa::Word {
self.registers[reg.into().as_num()]
}
}
impl Simulator {
pub fn new(num_cores: usize, binary: Binary) -> Simulator {
let memory = Memory::new_from_binary(0x2000, binary);
// TODO: initialize GP, registers (GP is in headers)
Simulator {
num_cores: num_cores,
memory: memory,
}
}
pub fn run(&mut self) {
let base_core = Core {
pc: 0x1002C,
registers: RegisterFile::new(),
running: true,
};
let mut cores = vec![base_core; self.num_cores];
// hardcode GP
cores[0].registers.write_word(isa::Register::X3, 0x108D0);
// hardcode SP
cores[0].registers.write_word(isa::Register::X2, 0x7FFC);
loop {
let mut ran = false;
for core in cores.iter_mut() {
if !core.running {
continue;
}
self.step_core(core);
ran = true;
}
if !ran {
println!("All cores are not running, stopping...");
break;
}
}
}
fn step_core(&mut self, core: &mut Core) {
let pc = core.pc;
if let Some(inst) = self.memory.read_instruction(pc) {
match inst.opcode() {
isa::opcodes::JALR => {
// TODO: assert funct3 is 0
let base = core.registers.read_word(inst.rs1())
as isa::SignedWord;
let target = (base + inst.i_imm()) as isa::Address;
let retval = (pc + 4) as isa::Word;
if target == 0x0 {
// ret
core.running = false;
}
else {
core.registers.write_word(inst.rd(), retval);
core.pc = target;
return;
}
},
isa::opcodes::JAL => {
let target = ((pc as isa::SignedWord) + inst.uj_imm()) as isa::Address;
core.registers.write_word(inst.rd(), (pc + 4) as isa::Word);
core.pc = target;
// panic!("JAL to {:X} 0x{:X}", pc, target);
return;
}
isa::opcodes::BRANCH => {
let target = ((pc as isa::SignedWord) + inst.sb_imm()) as isa::Address;
let rs1 = core.registers.read_word(inst.rs1());
let rs2 = core.registers.read_word(inst.rs2());
if match inst.funct3() {
isa::funct3::BEQ => rs1 == rs2,
isa::funct3::BNE => rs1 != rs2,
isa::funct3::BLT => (rs1 as isa::SignedWord) < (rs2 as isa::SignedWord),
isa::funct3::BGE => (rs1 as isa::SignedWord) > (rs2 as isa::SignedWord),
isa::funct3::BLTU => rs1 < rs2,
isa::funct3::BGEU => rs1 > rs2,
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
false
}
} {
core.pc = target;
return;
}
},
isa::opcodes::INTEGER_IMMEDIATE => {
let imm = inst.i_imm();
let src = core.registers.read_word(inst.rs1()) as isa::SignedWord;
if let Some(value) = match inst.funct3() {
isa::funct3::ADDI => {
Some(src.wrapping_add(imm) as isa::Word)
},
isa::funct3::SLLI => {
Some((src << inst.shamt()) as isa::Word)
},
isa::funct3::SLTI => {
if src < imm {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::SLTIU => {
if (src as isa::Word) < (imm as isa::Word) {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::XORI => {
Some((src ^ imm) as isa::Word)
},
isa::funct3::SRLI_SRAI => {
match inst.funct7() {
isa::funct7::SRLI => Some(((src as isa::Word) >> inst.shamt()) as isa::Word),
isa::funct7::SRAI => Some((src >> inst.shamt()) as isa::Word),
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::ORI => {
Some((src | imm) as isa::Word)
},
isa::funct3::ANDI => {
Some((src & imm) as isa::Word)
},
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
} {
core.registers.write_word(inst.rd(), value);
}
},
isa::opcodes::INTEGER_REGISTER => {
let src1 = core.registers.read_word(inst.rs1());
let src2 = core.registers.read_word(inst.rs2());
let src2_shift = src2 & 0x1F;
if let Some(value) = match inst.funct3() {
isa::funct3::ADD_SUB => {
match inst.funct7() {
isa::funct7::ADD_SRL => Some(((src1 as isa::SignedWord).wrapping_add(src2 as isa::SignedWord)) as isa::Word),
isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord).wrapping_sub(src2 as isa::SignedWord)) as isa::Word),
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::SLL => {
Some(src1 << src2_shift)
},
isa::funct3::SLT => {
if (src1 as isa::SignedWord) < (src2 as isa::SignedWord) {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::SLTU => {
if src1 < src2 {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::XOR => {
Some(src1 ^ src2)
},
isa::funct3::SRL_SRA => {
match inst.funct7() {
isa::funct7::ADD_SRL => Some(src1 >> src2_shift),
isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord) >> src2_shift) as isa::Word),
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::OR => {
Some(src1 | src2)
},
isa::funct3::AND => {
Some(src1 & src2)
},
_ => {
self.trap(core, Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
} {
core.registers.write_word(inst.rd(), value);
}
},
isa::opcodes::LOAD => match inst.funct3() {
isa::funct3::LW => {
let imm = inst.i_imm();
let base = core.registers.read_word(inst.rs1());
let address = ((base as isa::SignedWord) + imm) as isa::Address;
match self.memory.read_word(address) {
Ok(value) =>
core.registers.write_word(inst.rd(), value),
Err(MemoryError::CacheMiss {..}) => return,
Err(MemoryError::InvalidAddress) => {
self.trap(core, Trap::IllegalRead {
address: pc,
instruction: inst,
memory_address: address,
});
}
}
},
_ => {
panic!("Invalid load funct3code: 0x{:x}", inst.funct3());
}
},
isa::opcodes::STORE => match inst.funct3() {
isa::funct3::SW => {
let imm = inst.s_imm();
let base = core.registers.read_word(inst.rs1());
let val = core.registers.read_word(inst.rs2());
let address = ((base as isa::SignedWord) + imm) as isa::Address;
match self.memory.write_word(address, val) {
Ok(()) => (),
Err(MemoryError::CacheMiss {..}) => return,
Err(MemoryError::InvalidAddress) => {
self.trap(core, Trap::IllegalWrite {
address: pc,
instruction: inst,
memory_address: address,
memory_value: val,
})
}
}
}
_ => {
panic!("Invalid store funct3code: 0x{:x}", inst.funct3());
}
},
isa::opcodes::SYSTEM => match inst.i_imm() {
0x0 => {
// System call
println!("System call {}:", core.registers.read_word(isa::Register::X10));
let address = core.registers.read_word(isa::Register::X11);
println!("Argument {:X}: {:?}", address, self.memory.read_word(address));
}
_ => {
}
},
_ => {
panic!("Invalid opcode: 0x{:02X} at PC 0x{:X}", inst.opcode(), pc);
}
}
}
else {
// trap
}
core.pc += 4;
}
fn trap(&mut self, core: &mut Core, trap: Trap) {
println!("Trap: {:?}", trap);
core.running = false;
}
}