// Copyright 2015-2016 David Li
// This file is part of rustv.
// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with rustv. If not, see .
use isa;
use memory::{MemoryInterface, MemoryError, Mmu, SharedMemory};
struct RegisterFile {
registers: [isa::Word; 32],
}
pub struct Core<'a>{
pc: isa::Address,
registers: RegisterFile,
stall: u32,
running: bool,
cache: SharedMemory<'a>,
mmu: Box,
cycle_count: u32,
stall_count: u32,
}
pub struct Simulator<'a> {
cores: Vec>,
memory: SharedMemory<'a>,
}
#[derive(Debug)]
enum Trap {
IllegalInstruction {
address: isa::Address,
instruction: isa::Instruction,
},
IllegalRead {
address: isa::Address,
instruction: isa::Instruction,
memory_address: isa::Address,
},
IllegalWrite {
address: isa::Address,
instruction: isa::Instruction,
memory_address: isa::Address,
memory_value: isa::Word,
}
}
impl RegisterFile {
fn new() -> RegisterFile {
RegisterFile {
registers: [0; 32],
}
}
fn write_word>(&mut self, reg: T, value: isa::Word) {
// TODO: should be safe to use unchecked index
let reg = reg.into();
if reg == isa::Register::X0 { return; }
self.registers[reg.as_num()] = value;
}
fn read_word>(&mut self, reg: T) -> isa::Word {
self.registers[reg.into().as_num()]
}
}
impl<'a> Core<'a> {
// TODO: take Rc> to Memory as well?
pub fn new(entry: isa::Address, sp: isa::Address,
cache: SharedMemory<'a>, mmu: Box) -> Core<'a> {
let mut registers = RegisterFile::new();
registers.write_word(isa::Register::X2, sp);
Core {
pc: entry,
registers: registers,
stall: 0,
running: true,
cache: cache,
mmu: mmu,
cycle_count: 0,
stall_count: 0,
}
}
fn step(&mut self, inst: isa::Instruction) {
let pc = self.pc;
self.cycle_count += 1;
if self.stall > 0 {
self.stall -= 1;
self.stall_count += 1;
return;
}
match inst.opcode() {
isa::opcodes::JALR => {
// TODO: assert funct3 is 0
let base = self.registers.read_word(inst.rs1())
as isa::SignedWord;
let target = (base + inst.i_imm()) as isa::Address;
let retval = (pc + 4) as isa::Word;
if target == 0x0 {
// ret
self.running = false;
}
else {
self.registers.write_word(inst.rd(), retval);
self.pc = target;
return;
}
},
isa::opcodes::JAL => {
let target = ((pc as isa::SignedWord) + inst.uj_imm()) as isa::Address;
self.registers.write_word(inst.rd(), (pc + 4) as isa::Word);
self.pc = target;
// panic!("JAL to {:X} 0x{:X}", pc, target);
return;
}
isa::opcodes::BRANCH => {
let target = ((pc as isa::SignedWord) + inst.sb_imm()) as isa::Address;
let rs1 = self.registers.read_word(inst.rs1());
let rs2 = self.registers.read_word(inst.rs2());
if match inst.funct3() {
isa::funct3::BEQ => rs1 == rs2,
isa::funct3::BNE => rs1 != rs2,
isa::funct3::BLT => (rs1 as isa::SignedWord) < (rs2 as isa::SignedWord),
isa::funct3::BGE => (rs1 as isa::SignedWord) > (rs2 as isa::SignedWord),
isa::funct3::BLTU => rs1 < rs2,
isa::funct3::BGEU => rs1 > rs2,
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
false
}
} {
self.pc = target;
return;
}
},
isa::opcodes::INTEGER_IMMEDIATE => {
let imm = inst.i_imm();
let src = self.registers.read_word(inst.rs1()) as isa::SignedWord;
if let Some(value) = match inst.funct3() {
isa::funct3::ADDI => {
Some(src.wrapping_add(imm) as isa::Word)
},
isa::funct3::SLLI => {
Some((src << inst.shamt()) as isa::Word)
},
isa::funct3::SLTI => {
if src < imm {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::SLTIU => {
if (src as isa::Word) < (imm as isa::Word) {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::XORI => {
Some((src ^ imm) as isa::Word)
},
isa::funct3::SRLI_SRAI => {
match inst.funct7() {
isa::funct7::SRLI => Some(((src as isa::Word) >> inst.shamt()) as isa::Word),
isa::funct7::SRAI => Some((src >> inst.shamt()) as isa::Word),
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::ORI => {
Some((src | imm) as isa::Word)
},
isa::funct3::ANDI => {
Some((src & imm) as isa::Word)
},
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
} {
self.registers.write_word(inst.rd(), value);
}
},
isa::opcodes::INTEGER_REGISTER => {
let src1 = self.registers.read_word(inst.rs1());
let src2 = self.registers.read_word(inst.rs2());
let src2_shift = src2 & 0x1F;
if let Some(value) = match inst.funct3() {
isa::funct3::ADD_SUB => {
match inst.funct7() {
isa::funct7::ADD_SRL => Some(((src1 as isa::SignedWord).wrapping_add(src2 as isa::SignedWord)) as isa::Word),
isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord).wrapping_sub(src2 as isa::SignedWord)) as isa::Word),
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::SLL => {
Some(src1 << src2_shift)
},
isa::funct3::SLT => {
if (src1 as isa::SignedWord) < (src2 as isa::SignedWord) {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::SLTU => {
if src1 < src2 {
Some(1)
}
else {
Some(0)
}
},
isa::funct3::XOR => {
Some(src1 ^ src2)
},
isa::funct3::SRL_SRA => {
match inst.funct7() {
isa::funct7::ADD_SRL => Some(src1 >> src2_shift),
isa::funct7::SUB_SRA => Some(((src1 as isa::SignedWord) >> src2_shift) as isa::Word),
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
}
},
isa::funct3::OR => {
Some(src1 | src2)
},
isa::funct3::AND => {
Some(src1 & src2)
},
_ => {
self.trap(Trap::IllegalInstruction {
address: pc,
instruction: inst,
});
None
}
} {
self.registers.write_word(inst.rd(), value);
}
},
isa::opcodes::LOAD => match inst.funct3() {
isa::funct3::LW => {
let imm = inst.i_imm();
let base = self.registers.read_word(inst.rs1());
let address = ((base as isa::SignedWord) + imm) as isa::Address;
let address = self.mmu.translate(address);
let result = self.cache.borrow_mut().read_word(address);
match result {
Ok(value) => self.registers.write_word(inst.rd(), value),
Err(MemoryError::CacheMiss { stall_cycles }) => {
self.stall = stall_cycles;
return;
},
Err(MemoryError::InvalidAddress) => {
self.trap(Trap::IllegalRead {
address: pc,
instruction: inst,
memory_address: address,
});
}
}
},
_ => {
panic!("Invalid load funct3code: 0x{:x}", inst.funct3());
}
},
isa::opcodes::STORE => match inst.funct3() {
isa::funct3::SW => {
let imm = inst.s_imm();
let base = self.registers.read_word(inst.rs1());
let val = self.registers.read_word(inst.rs2());
let address = ((base as isa::SignedWord) + imm) as isa::Address;
let address = self.mmu.translate(address);
let result = self.cache.borrow_mut().write_word(address, val);
match result {
Ok(()) => (),
Err(MemoryError::CacheMiss { stall_cycles }) => {
self.stall = stall_cycles - 1;
return;
},
Err(MemoryError::InvalidAddress) => {
self.trap(Trap::IllegalWrite {
address: pc,
instruction: inst,
memory_address: address,
memory_value: val,
})
}
}
}
_ => {
panic!("Invalid store funct3code: 0x{:x}", inst.funct3());
}
},
isa::opcodes::SYSTEM => match inst.i_imm() {
0x0 => {
// System call
println!("System call {}:", self.registers.read_word(isa::Register::X10));
}
_ => {
}
},
_ => {
panic!("Invalid opcode: 0x{:02X} at PC 0x{:X}", inst.opcode(), pc);
}
}
self.pc += 4;
}
fn trap(&mut self, trap: Trap) {
println!("Trap: {:?}", trap);
self.running = false;
}
}
impl<'a> Simulator<'a> {
pub fn new(cores: Vec>, memory: SharedMemory<'a>)
-> Simulator<'a> {
// TODO: initialize GP, registers (GP is in headers)
Simulator {
cores: cores,
memory: memory,
}
}
pub fn run(&mut self) {
loop {
let mut ran = false;
for core in self.cores.iter_mut() {
if !core.running {
continue;
}
let pc = core.pc;
let pc = core.mmu.translate(pc);
let inst = self.memory.borrow_mut().read_instruction(pc);
if let Some(inst) = inst {
core.step(inst);
}
else {
// TODO: trap
}
core.cache.borrow_mut().step();
ran = true;
}
if !ran {
println!("All cores are not running, stopping...");
for (i, core) in self.cores.iter().enumerate() {
println!("Core {}: stalled {} of {}", i, core.stall_count, core.cycle_count);
}
break;
}
}
}
}