// Copyright 2015 David Li // This file is part of rustv. // rustv is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // rustv is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with rustv. If not, see . use isa::{self, Instruction}; use binary::{Binary}; #[derive(Debug)] pub enum MemoryError { InvalidAddress, CacheMiss { stall_cycles: u32, }, } pub type Result = ::std::result::Result; pub trait MemoryInterface { fn latency() -> u32; fn read_word(&self, address: isa::Address) -> Result; fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()>; // fn read_halfword(&self, address: isa::Address) -> Result; // fn write_halfword(&self, address: isa::Address) -> Result<()>; // fn read_byte(&self, address: isa::Address) -> Result; // fn write_byte(&self, address: isa::Address) -> Result<()>; } pub struct Mmu { memory: T, } pub struct Memory { memory: Vec, } #[derive(Clone)] struct FetchRequest { address: isa::Address, prefetch: bool, cycles_left: u32, } #[derive(Clone)] struct CacheBlock { valid: bool, tag: u32, contents: Vec, fetch_request: Option, } type CacheSet = Vec; // TODO: probably want different caches for different strategies, and // investigate how LRU is implemented // TODO: use hashtable for a way? // TODO: hashtable-based FA cache? pub struct Cache { num_sets: u32, num_ways: u32, block_words: u32, cache: Vec, next_level: T, } impl Memory { pub fn new(size: isa::Address, binary: Binary) -> Memory { let mut memory = binary.words.clone(); let size = size as usize; if size > memory.len() { let remainder = size - memory.len(); memory.reserve(remainder); } Memory { memory: memory, } } pub fn read_instruction(&self, pc: isa::Address) -> Option { self.memory.get((pc / 4) as usize) .map(Clone::clone) .map(Instruction::new) } } impl MemoryInterface for Memory { fn latency() -> u32 { 100 } fn read_word(&self, address: isa::Address) -> Result { // memory is word-addressed but addresses are byte-addressed self.memory.get((address / 4) as usize) .map(Clone::clone) .ok_or(MemoryError::InvalidAddress) } fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()> { let address = (address / 4) as usize; if address >= self.memory.len() || address <= 0 { Err(MemoryError::InvalidAddress) } else { self.memory[address] = value; Ok(()) } } } impl Cache { pub fn new(sets: u32, ways: u32, block_words: u32, next_level: T) -> Cache { let set = vec![CacheBlock { valid: false, tag: 0, contents: vec![0; block_words as usize], fetch_request: None, }; ways as usize]; Cache { num_sets: sets, num_ways: ways, block_words: block_words, cache: vec![set; sets as usize], next_level: next_level, } } pub fn parse_address(&self, address: isa::Address) -> (u32, u32, u32) { // TODO: use constant in ISA module for word->byte conversion let offset_mask = (self.block_words * 4 - 1) as u32; let offset = address & offset_mask; let index_mask = (self.num_sets - 1) as u32; let index_shift = 32 - (self.block_words * 4).leading_zeros() - 1; let index = (address >> index_shift) & index_mask; let tag_shift = index_shift + (32 - self.num_sets.leading_zeros()) - 1; let tag = address >> tag_shift; (tag, index, offset) } pub fn prefetch(&mut self, address: isa::Address) { } pub fn invalidate(&mut self, address: isa::Address) { } } impl MemoryInterface for Cache { fn latency() -> u32 { 100 } fn read_word(&self, address: isa::Address) -> Result { let (tag, index, offset) = self.parse_address(address); let ref set = self.cache[index as usize]; for way in set { if way.tag == tag { return Ok(way.contents[(offset / 4) as usize]); } } Err(MemoryError::CacheMiss { stall_cycles: Cache::::latency() + T::latency() }) } fn write_word(&mut self, address: isa::Address, value: isa::Word) -> Result<()> { // XXX: temporary self.next_level.write_word(address, value) } }