// Copyright 2015-2016 David Li
// This file is part of rustv.
// rustv is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// rustv is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with rustv. If not, see .
#![feature(braced_empty_structs, step_by)]
extern crate elfloader32 as elfloader_lib;
pub mod isa;
pub mod binary;
pub mod memory;
pub mod simulator;
pub use elfloader_lib as elfloader;
#[test]
fn test_elfloader() {
use std::io::prelude::*;
use std::fs::File;
use std::rc::Rc;
use std::cell::RefCell;
use memory::{Mmu, MemoryInterface};
let mut f = File::open("../riscv/kernel").unwrap();
let mut buffer = Vec::new();
f.read_to_end(&mut buffer).unwrap();
let elf = elfloader::ElfBinary::new("test", &buffer).unwrap();
let start = elf.file_header().entry as isa::Address;
let mut text = None;
let mut data = None;
for p in elf.section_headers() {
if p.name.0 == 0x1b {
text = Some((elf.section_data(p), p.addr));
}
else if p.name.0 == 0x33 {
data = Some((elf.section_data(p), p.addr));
}
}
let (text, text_offset) = text.unwrap();
let (data, data_offset) = data.unwrap();
let mmu = memory::IdentityMmu::new();
let mmu2 = memory::ReverseMmu::new(0x8000);
let mut memory = memory::Memory::new(0x10000);
memory.write_segment(&mmu, text, text_offset as usize);
memory.write_segment(&mmu, data, data_offset as usize);
memory.write_segment(&mmu2, text, text_offset as usize);
memory.write_segment(&mmu2, data, data_offset as usize);
let memory_box = Box::new(memory) as Box;
let memory_ref = Rc::new(RefCell::new(memory_box));
let cache = memory::DirectMappedCache::new(4, 4, memory_ref.clone());
let cache_box = Box::new(cache) as Box;
let cache_ref = Rc::new(RefCell::new(cache_box));
let core = simulator::Core::new(
start, 0x1000,
cache_ref.clone(), Box::new(mmu));
let core2 = simulator::Core::new(
start, 0x3000,
cache_ref.clone(), Box::new(mmu2));
let cores = vec![core, core2];
let mut simulator = simulator::Simulator::new(cores, memory_ref.clone());
simulator.run();
}
#[cfg(test)]
mod tests {
#[test]
fn cache_address_parsing() {
use memory::*;
use std::rc::Rc;
use std::cell::RefCell;
let memory = Memory::new(16);
let memory_ref = Rc::new(RefCell::new(Box::new(memory) as Box));
let dm_cache_word = DirectMappedCache::new(4, 1, memory_ref.clone());
let dm_cache_doubleword = DirectMappedCache::new(4, 2, memory_ref.clone());
assert_eq!(dm_cache_word.parse_address(0xFFFFFFFD),
(0xFFFFFFF, 3, 1));
assert_eq!(dm_cache_doubleword.parse_address(0xFFFFFFFD),
(0x7FFFFFF, 3, 5));
}
#[test]
fn memory_rw() {
use std::rc::Rc;
use std::cell::RefCell;
use memory::*;
let size = 0xFF;
let mut memory = Memory::new(size);
assert_eq!(memory.write_word(0, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(0, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(1, 0xF0),
Err(MemoryError::InvalidAddress));
assert_eq!(memory.write_byte(2, 0xF0),
Err(MemoryError::InvalidAddress));
for address in (4..size).step_by(4) {
assert_eq!(memory.write_word(address, 0xF0), Ok(()));
assert_eq!(memory.read_word(address), Ok(0xF0));
}
assert_eq!(memory.write_word(0x10, 0x01234567), Ok(()));
assert_eq!(memory.write_word(0x14, 0xDEADBEEF), Ok(()));
assert_eq!(memory.read_byte(0x10), Ok(0x67));
assert_eq!(memory.read_byte(0x11), Ok(0x45));
assert_eq!(memory.read_byte(0x12), Ok(0x23));
assert_eq!(memory.read_byte(0x13), Ok(0x01));
let stall = Err(MemoryError::CacheMiss {
stall_cycles: memory.latency(),
});
let write_stall = Err(MemoryError::CacheMiss {
stall_cycles: memory.latency(),
});
let memory_box = Box::new(memory) as Box;
let memory_ref = Rc::new(RefCell::new(memory_box));
let mut dm_cache = DirectMappedCache::new(4, 4, memory_ref.clone());
assert_eq!(dm_cache.read_word(0x10), stall);
for _ in 0..100 {
dm_cache.step();
}
assert_eq!(dm_cache.write_word(0x20, 0x123), write_stall);
assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567));
assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF));
assert_eq!(dm_cache.read_word(0x18), Ok(0xF0));
assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0));
assert_eq!(dm_cache.read_byte(0x10), Ok(0x67));
assert_eq!(dm_cache.read_byte(0x11), Ok(0x45));
assert_eq!(dm_cache.read_byte(0x12), Ok(0x23));
assert_eq!(dm_cache.read_byte(0x13), Ok(0x01));
assert_eq!(dm_cache.write_word(0x18, 0xBEEFBEEF), Ok(()));
assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF));
assert_eq!(memory_ref.borrow_mut().read_word(0x18), Ok(0xBEEFBEEF));
for _ in 0..100 {
dm_cache.step();
}
assert_eq!(dm_cache.write_word(0x20, 0x123), Ok(()));
assert_eq!(memory_ref.borrow_mut().read_word(0x20), Ok(0x123));
// Should not have been evicted
assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567));
assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF));
assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF));
assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0));
}
}