// Copyright 2015-2016 David Li // This file is part of rustv. // rustv is free software: you can redistribute it and/or modify // it under the terms of the GNU General Public License as published by // the Free Software Foundation, either version 3 of the License, or // (at your option) any later version. // rustv is distributed in the hope that it will be useful, // but WITHOUT ANY WARRANTY; without even the implied warranty of // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the // GNU General Public License for more details. // You should have received a copy of the GNU General Public License // along with rustv. If not, see . #![feature(braced_empty_structs, step_by)] extern crate elfloader as elfloader_lib; pub mod isa; pub mod binary; pub mod memory; pub mod simulator; pub use elfloader_lib as elfloader; #[test] fn test_elfloader() { use std::io::prelude::*; use std::fs::File; use std::rc::Rc; use std::cell::RefCell; use memory::{Mmu, MemoryInterface}; let mut f = File::open("../riscv/kernel").unwrap(); let mut buffer = Vec::new(); f.read_to_end(&mut buffer).unwrap(); let elf = elfloader::ElfBinary::new("test", &buffer).unwrap(); let start = elf.file_header().entry as isa::Address; let mut text = None; let mut data = None; for p in elf.section_headers() { if p.name.0 == 0x1b { text = Some((elf.section_data(p), p.addr)); } else if p.name.0 == 0x33 { data = Some((elf.section_data(p), p.addr)); } } let (text, text_offset) = text.unwrap(); let (data, data_offset) = data.unwrap(); let mmu = memory::IdentityMmu::new(); let mmu2 = memory::ReverseMmu::new(0x8000); let mut memory = memory::Memory::new(0x10000); memory.write_segment(&mmu, text, text_offset as usize); memory.write_segment(&mmu, data, data_offset as usize); memory.write_segment(&mmu2, text, text_offset as usize); memory.write_segment(&mmu2, data, data_offset as usize); let memory_box = Box::new(memory) as Box; let memory_ref = Rc::new(RefCell::new(memory_box)); let cache = memory::DirectMappedCache::new(4, 4, memory_ref.clone()); let cache_box = Box::new(cache) as Box; let cache_ref = Rc::new(RefCell::new(cache_box)); let core = simulator::Core::new( start, 0x1000, cache_ref.clone(), Box::new(mmu)); let core2 = simulator::Core::new( start, 0x3000, cache_ref.clone(), Box::new(mmu2)); let cores = vec![core, core2]; let mut simulator = simulator::Simulator::new(cores, memory_ref.clone()); simulator.run(); } #[cfg(test)] mod tests { #[test] fn cache_address_parsing() { use memory::*; use std::rc::Rc; use std::cell::RefCell; let memory = Memory::new(16); let memory_ref = Rc::new(RefCell::new(Box::new(memory) as Box)); let dm_cache_word = DirectMappedCache::new(4, 1, memory_ref.clone()); let dm_cache_doubleword = DirectMappedCache::new(4, 2, memory_ref.clone()); assert_eq!(dm_cache_word.parse_address(0xFFFFFFFD), (0xFFFFFFF, 3, 1)); assert_eq!(dm_cache_doubleword.parse_address(0xFFFFFFFD), (0x7FFFFFF, 3, 5)); } #[test] fn memory_rw() { use std::rc::Rc; use std::cell::RefCell; use memory::*; let size = 0xFF; let mut memory = Memory::new(size); assert_eq!(memory.write_word(0, 0xF0), Err(MemoryError::InvalidAddress)); assert_eq!(memory.write_byte(0, 0xF0), Err(MemoryError::InvalidAddress)); assert_eq!(memory.write_byte(1, 0xF0), Err(MemoryError::InvalidAddress)); assert_eq!(memory.write_byte(2, 0xF0), Err(MemoryError::InvalidAddress)); for address in (4..size).step_by(4) { assert_eq!(memory.write_word(address, 0xF0), Ok(())); assert_eq!(memory.read_word(address), Ok(0xF0)); } assert_eq!(memory.write_word(0x10, 0x01234567), Ok(())); assert_eq!(memory.write_word(0x14, 0xDEADBEEF), Ok(())); assert_eq!(memory.read_byte(0x10), Ok(0x67)); assert_eq!(memory.read_byte(0x11), Ok(0x45)); assert_eq!(memory.read_byte(0x12), Ok(0x23)); assert_eq!(memory.read_byte(0x13), Ok(0x01)); let stall = Err(MemoryError::CacheMiss { stall_cycles: memory.latency(), }); let write_stall = Err(MemoryError::CacheMiss { stall_cycles: memory.latency(), }); let memory_box = Box::new(memory) as Box; let memory_ref = Rc::new(RefCell::new(memory_box)); let mut dm_cache = DirectMappedCache::new(4, 4, memory_ref.clone()); assert_eq!(dm_cache.read_word(0x10), stall); for _ in 0..100 { dm_cache.step(); } assert_eq!(dm_cache.write_word(0x20, 0x123), write_stall); assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567)); assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF)); assert_eq!(dm_cache.read_word(0x18), Ok(0xF0)); assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0)); assert_eq!(dm_cache.read_byte(0x10), Ok(0x67)); assert_eq!(dm_cache.read_byte(0x11), Ok(0x45)); assert_eq!(dm_cache.read_byte(0x12), Ok(0x23)); assert_eq!(dm_cache.read_byte(0x13), Ok(0x01)); assert_eq!(dm_cache.write_word(0x18, 0xBEEFBEEF), Ok(())); assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF)); assert_eq!(memory_ref.borrow_mut().read_word(0x18), Ok(0xBEEFBEEF)); for _ in 0..100 { dm_cache.step(); } assert_eq!(dm_cache.write_word(0x20, 0x123), Ok(())); assert_eq!(memory_ref.borrow_mut().read_word(0x20), Ok(0x123)); // Should not have been evicted assert_eq!(dm_cache.read_word(0x10), Ok(0x01234567)); assert_eq!(dm_cache.read_word(0x14), Ok(0xDEADBEEF)); assert_eq!(dm_cache.read_word(0x18), Ok(0xBEEFBEEF)); assert_eq!(dm_cache.read_word(0x1C), Ok(0xF0)); } }